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'AbstractV/
The weak convergence of certain (randomly stopped) likelihood ratio

processes based on the ordered observations corresponding to a random sample

is considered in the situation where the hazard rate function of the under-

lying distribution is separable in its variables. It is shown that under

mild conditions on the stopping variables the log-likelihood function is

locally asymptotically normal. Some remarks pertaining to the general ease

and applications of the theorems proved are also discussed.

<--

AMS Subject Classifications: 60B10, 60G40

Key Words and Phrases: Clinical trials, life-testing, likelihood ratio
statistics, progressive censoring, stopping times,
weak convergence, Wiener process.

1 esearch sponsore(! , part by the Biomedical Research Support Grant Program of
the National Insti o f Health under BRSG S07-707049-14 and in part by the
Office of Naval Research under N00014-79-C-0522.- Reproduction in whole or part
is permitt(d for any purpose of th! U.S. Govtrnment.

4k.



1. INTRODUCTION. In a variety of statistical experiments, notably those

connected with clinical trials and life tests, the observable variables are

time-ordered and consequently recorded in the order of increasing size.

Specifically if XI , .... Xn  (n > 1) denote the survival times of n speci-

mens under a life test then in the typical situation encountered in practice

the observable random variables correspond to the ordered sample Xn,l,--',Xn,n

based on XI' ...,X rather than on the survival times themselves. Now a

complete collection of the data calls for the monitoring of the experiment

until the last observation X is recorded. However, ethical considera-n,n

tions and limitations on time and cost often demand curtailment of experimen-

tation before all the specimens under study have responded and so, in practice,

experimentation may be terminated after a prespecified proportion of units

have responded (c) or alternatively after the investigation has been

monitored for a prespecified length of time (truncation). These sampling

procedures themselves lack certain elegancies stemming from cost and efficiency

considerations. For example, a too early truncation typically increases the

risk of erroneous decision whereas in the censoring scheme the randomness of

the time of termination of experimentation could be at variance with restric-

tions on time and cost. For these reasons it is generally desirable to monitor

the experiment from the onset and continuously update the data so that at

A any stage of the experiment if the current evidence warrants a clear statis-

tical decision the experiment can be terminated at that stage with the adoption

of the appropriate decision which the current accumulated evidence indicates.

Such sampling schemes are called Progressivel Censored Schemes (PCS) and in

our formulation they lead naturally to the consideration of a broad class of

stopping variables {i ; n > 1}, where for each n 1, T is defined in
n n

terms of the observables X I'" "n,1 "'n,n
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The purpose of this note is to develop an invariance principle for pro-

gressively censored likelihood ratio processes valid for a class of survival

distributions in which the hazard rate function is separable in its variables.

Whereas in Sen (1976) and Gardiner (1978) weak convergence results have been

derived for the general case, in the present situation an immensely simplified

analysis can be presented under fewer regularity conditions using simple clas-

sical techniques.

Along with the preliminary notions the main results are formulated in

Section 2. Section 3 deals with the proofs of the theorems and Section 4 is

devoted to some general remarks and extensions.

2. Preliminary notions and the main theorems. Let {X.; i > 11 be a sequence

of independent and identically distributed random variables (iidrv) whose

distribution v8 on the Borel line (R,B) depends on a parameter 6, e c 0 £ R.

Assume 0 to be an open interval of R. We suppose the family of measures

{v, : 01 is dominated by Lebesgue measure p on (R,B) and write

fa () - dv /dI for a version of the probability density function (pdf) and

F (.) for the corresponding distribution function (df), which is then

continuous. Let (RjB.), j : 1 be copies of the Borel line and set (X,A)

J1 (R, B ) with P0  denoting the product measure of the v, induced on A.

E will denote the expectation evaluated with respect to Pe"

Following the usual terminology we define the survival function Ge by

(2.1) Ge (x) = 1 - F(x)

and the hazard rate function (force of mortality intensity rate) r0 by

(2.2) re(X) = f0(x)/C(x).

0_Ol .0
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We suppose fe(x) > 0 for every x c R and 6 c 0 so that r (x)> 0

whenever 0 < F (x) < 1. In this note we shall confine attention to distri-

butions for which r (x) can be expressed as

(2.3) re(x) = h(x)/Q(O)

where h and Q are respectively functions of x and 6 only. The class

of univariate densities f satisfying (2.3) form a subclass of the exponential

family. We require h to be V integrable over each interval [a,b], a,b c R

and Q to be continuously differentiable on 0, the closure of 6 in R.

In the typical situation encountered in life testing and clinical trials

the observable random variables are the order statistics Z < Z2  ... < Z

corresponding to X 1  ...PX We denote by

(2.4) z(k) = (Z1, ...,Zk), 1 < k <- n; Z0 = Z( 0 ) = 0

and write B for the a-field generated by Z (k ) , I k n. S is the
n,k n , 0

trivial a-field. We also consider a class of stopping variables Tn, n > 1

such that for each n, T is adapted to the a-fields {B :1 5 k 5 n1.
n n,k

Now for every k, I - k -< n, the joint pdf of Z(k) is

z(k)  k

(2.5) Qn) = {n!/(n - k):) i 6lf(zi)}G (z )}n-k

(k)
defined on the domain {z -C < z <...< zk < -}. Fix 0 in 0 and

for a sequence {6 in 0 of the form Ae F

-26 eNTIS GM &I
(2.6) e =00 + un u e R DDC TAB

. n Unannounced

we define for each k, 1 k5 n Justification_____
By

(2.7) Ank(U) f P (k) ,)p(z(k) Distribution/

n 0 $vail D!Zty Codes

Avail anid/or~
Dist special
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Note that A (u) reduces to the classical likelihood ratio statisticn,n
n
it1(f (X )/f (X for the lid sequence X1,...,X and parameters 0 and

. We are here concerned with the "stopped" statistics A , where A n
n nTn n

An,k when Tn = k. We shall develop an invariance principle for the process

u - A (u). To formulate this precisely let us write 0 = (a,b), where
n

- a < b + -, a = nh(a - e0), b n n (b -6 0), and define A (u) byn 0 nn, n
(r) (T)

(2.8) A (u) P0 ( n ,n)/p (Z n),n), if u c (a ,bn)
n,T n 0 0 fl n

= (u - an + ) 2A (a if u (a n lan] n>

= 0 ,if u : a -, a >n n

and simil'arly for u E [bb+ 1) and u>b +1 if < Then
n n n n

A has sample paths in C(R) - the space of all real-valued continuousn, T
n

functions on R. We endow C(R) with the topology of uniform convergence

on compacta. Then C(R) is a complete separable metric space.

Define the sequence

' a p o ( ( k )
(2.9) (n,k = lo ,n)), k l,...,n. n 0

and write

(2.10) J (2) }

n,T n n,T n

N, Introduce the sequence of functions {k (-;a); n 11 on [0,1] by
n

( n(t;B) [tE 0(rn)3

where [x] denotes the greatest integer x. Then the k may assume only
n

the integer values 0,...,n. Finally for fixed 0 we define a process

W = (w (t;o) t c [0,11) byfl,T NT
n n

0V
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(2.12) W (t;O) = 4nkn(t;e)/nt(
nTn n n

This process has sample paths in D[0,1] -- the space of all real valued

right continuous functions on [0,1) with left hand limits. Equip D[0,1]

with the usual Skorohod topology. Write

(2.13) A(u) = exp{uJ(O ) - u2j (e0)}, u c R
a 0 a 0

where C is a standard Gaussian variable and

(2.14) J (0) = a(Q'(O)/Q(e)) 2, 6 C 0, a E (0,1].
a

Theorem 1. With the assum tions made above and 6 fixed in 0, whenever

n T 0E (0,1] Ln P robabilit and Q'(6) # 0, then under P '

(2.15) W - W in D[0,1],

n

* where W = {W(t) : t c [0,1]) is a standard Wiener process in D[O,1].

-1

Theorem 2. With the assumtions aeabove, whenever n T a c (0,1] in

P -karodbilitY and Q'(0 O) # 0, then under P

(2.16) A A in C(R)n,T nw --

where the process A is defined in (2.13).

Even though the limiting process A in Theorem 2 has sample paths in

C (R) -- the space of all real valued continuous functions on R vanishing
0

at ±m -- the processes A may not have paths in this space unless 0
n,T

is a bounded set. We define for each E ->0,

(2.17) A () ^ ( M) if u C (an,b n n (-ncn )
f"l, T nl,T n

ni n

and extend the definition of A(n, (u) to all of R in exactly the same way• n,t n

as In (2.8). T (r)
as i (28).Thent A has trajtectorkcs in C MR. Note that the processes

*n,T 0
n
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A(E) and A are essentially the same if 0 is bounded. Equip C0 (R)
n,T nn,Tn n

with the uniform metric topology.

Theorem 3. With ttions made abovTe, if nl - a E (0,1] in P0-

proba , Q' (e0 ) # 0 and either

(a) Pe (Tn _> [n6]) = 1, for some 0 < 6 5 a, all n l I

0 2n

or (b) P 0 (n T 6) A26 n, for some A < and 0 < 6 < a, all n 1,

then for each E > 0,

(2.18) A(C) -- A, in C(R),
n,T w 0

under the probability measure P
00

3. Proofs of Theorems. The conditional pdf of Zi  given Bn,i_1  is

(3.1) q9 (z(B n,i-_) = (n - i + l)fe(z)(G 6(z)}n-i/{(G0(Zi- ) }n -i+ l

defined for z > Z i_. In view of (2.2) and (2.3) we then have for each i,

1 i n

(3.2) qo(Zi1Bni l )  (n-i+l)h(z i)Q- ()exp(-(n-i+l)Q-1(0) h(x)di).

zi-l

Define the random variables Y0,YI,...,Y , n 0 as follows.

Z.
S(3.3) Y0 =f 0, Yi = (n1-l+l) hz- dp, i 1 ,...,n.

~Then it follows from (3.2) that the Yl's are iidrv's with the simple expo-

" nential distribution and

(3.4) E (Yi )  Q(O), Var0(Y Q i = 1,...,n.

Now from (2.5) and (3.1) one obtains for each k, ml k o n

jmI
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(3.5)(k) n) k

and therefore from (2.9) we get for any k, 1 :5 k :5 n

k *
(3.6) t n,k = Jl1 n, i

where =-- (logq (Zj% 1)) i = 1..n

Hence from (3.2) and (3.3), this gives us

*(log0(0)) +Q ,(0)
n Q 2(e) i

(3.7) RLE= (Y.-Q ).

Employing (3.4) and the relation in (3.6) it also follows directly that

T n *2 2 __

(3.8) 1 ,T(0) =E 0( J1 E O(En .B nil)) - Q~) E

Therefore combining (2.12), (3.7) and (3.8) the process W n nreduces to

[tE 0(-r n
1'(3.9) Wnt(t;e) = {E6 (t) 2 E~ (Y~ - Q (8))/Q (e) .

Note that we are holding 0 fixed in 0. Since n T n-~ a in P 6-probability,

-1by assumption, we have n E 0(T n ~n Then since the (Y.i - Q(O))IQ(O) are

iid variables with zero mean and variance unity we obtain the desired result

(2.15) by an application of Donsker's Theorem. (See Billingsley (1968)).

Observe that

T nt q0 (Z iJB i-

(3.10) A (u) R n1n

n,T i=l q ( 00 ZB'-

*where , 0 c 0 and 6 is given by (2.6). Assume for the moment 0 R,

i.e. a =-,b +.Now for each 1, 1 1 n we have from (3.2)



q0 (Z Bi 1(n3 )-1 Q(e) (q(e) - Q(e0).
(31)- exp )Q Y

0 ~i1 Q') Q(8 £('n

and therefore

Q(on) - Q(O ) Tn
(3.12) logA (u) = (Y - Q(e ))/Q(e

nI n

+ Q( Gn ) log Q(e)) I
n j -

But Q() 1 +-, * -60 1< ujn -  and furthermore
n 0 (n) whr nUf

by the continuity of Q and Q'

(3.13) Q(e) + Q(E0 ), Q'(0) + Q'(0 0).

Hence the first term on the right hand side of (3.12) can be rewritten

un! *2 Tn
(3.14) u- {Q'(en)/Q(e n)}Il(Y Q(Oo))/Q(6

n i =l 1 0))Q 0)
-1

Again, since n -rn -- a E (0,1] in Po8 -probability and the (Yi - Q(O0))/Q(60)

are iidrv's with mean zero and unit variance it follows that, under the

probability measure P 0

-1 - Tn .
(3.15) C = a n iE1(Yi - q(0 0))IQ(eO) w,

where t is a standard normal variable. So in view of (2.14), (3.13) and

(3.15) the entity in (3.14) converges weakly (under P ) to uJ (0 )C.
6 0 U 0

To analyze the second term on the right hand side of (3.12) we proceed

as follows. Let x (u) = un- Q'(0n)/Q(0 ).Now
n 0

4s

kM'..t
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Q(n) - Q( o) Q(0n)

Q(0) - log Q(00 )

= xn(1 + xn)- 1 - log(l + xn

=x(+x - X + x (log(l+X) -x + ix)

= - x2(1 + xn)-l (1 - x) - gn where

(3.16) gn = g n(u) log(l + xn(u))- x (u) + x2 (u).n n

From (3.13) and the definition of x (u) we have at once x (u) - 0 for
n n

each u E R. Furthermore from the elementary inequalities

(3.17) x3 /3(l + x) 5 log(l + x) - x + !x2 < x3/3, x > -l

we also have that ng(U) 0 for each u E R. Therefore since n T a
n

in P -probability we getP0

(0n) - Q(0 ) Q(0)'\ 2

(3.18) loI - uj (00) + 0 (1)
n318 0)

and thus we have shown

(3.19) logA (u) - {uJ( ) - }= logA(u)
n, w 0 uj (0 0 )

for each fixed u e R. Of course when 0 = (a,b), a,b finite (3.19) continues

to hold for the process A defined in (2.8). It also follows from (3.19)nT n

that the finite dimensional distributions of the process A converge
n,

weakly to those of A. Therefore to complete the proof of Theorem 2 we need

only verify that A is tight. To demonstrate this it suffices to show0J ~n, T n

that for any L > 0

(3.20) E 0 (A n(Ul) ( A (u2)) 2 < K(u - u2
o a[ n s Tn n depending o

for all uUl, 2 c [-L,L] and some constant K > 0 not depending on Ul,U 2

A il " . ... . ... .. .

+ . .,,+ ' ... ?fill
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or n. However, since E 00(A nTn(u))= 1 for U E (a ,5b n and in view of

(2.8) we need verify (3.20) for arbitrary u 1u2 c (a n b n n [-L,L]. Now

for u1 ,u 2 5 with u 2 < LI 1

(3. 22) EJ A7 (u 1 2n E(k (k)) n)~ p z()n)2=

Er T =k n n2knT=j~ n,2k

(k)~ 2- k
that2 the rih han sid of (321 is dmntedi byk u/,whr

A,,

:514 >0 th fiit diesoa ditiunso h~e poes p~ converg
n~l ,2 0n,2 E - n =l 6 aOk

eal une 0 totehorepndn finite dimensional distribut ions ofthprcs AF) oneg

A. Thus once again we are left with verifying the tightness of A W in
n,T n

C 0 (R). To this end we follow lbragimov and Khas'minskii (1972,1975) and

establish two preliminary lemmata.

Lemmia 1. For each 0 E 0, 11 1-

(3.23) k~]J-~1~e((k) ,n) - (~ n)21JnT (0) + o(h 2

n

as h -~0.
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Proof. Write M(h) for the expression on the left hand side of (3.23).

Following the usual argument as in (3.22) we have

h 1O+h j ( ) (f .

M(h) :< 1 (6O n'On

and so from (3.8) we arrive at

lir h-2M(h) < 1/4J (e).
fl,Th-*O nn

To obtain the reverse inequality we use Fatou's lemma.

im -2 nr 1i(lp'2
hn l/)p dfP2 l/4Jn, e)

h0h kE-i[T =k] P-- k =  n,(),

and hence (3.23) is proven.

Lemma 2. Under the conditions placed on the sequence {T I in Theorem 3,
n

for any K > 0 there exists constants clc 2 > 0 and an integer n > 1

such that

(3.24) P [A (u) > exp(-clu
2)] _ c2exp(-cu

2)
(324 P0 n,T n 2

whenever Jul Kn and n - n

Proof. In view of (2.8) we may confine attention to u c (an,bn). Now
__ n9 n

P [A (u) ex(-clu2) (-2) where E (A n (u)). Since
e , P 2 1  c n

E (A (u)) = 1 we have from Lemma 1
'- 0 nT

2 -1 2
(3.25) = - i (0 ) + o(u In).

n-1 0

Now n J (0) - J (0) as n and so for some integer n0  1,
n,T 0 a 00

n -j (0) > J a(0 0) whenever n n 0 Also there exists K > 0,

sufficiently small such that Io(u 2 /n)I . (u 2/32)J (0 0), whenever Jul !5 K n

Hence for any u satisfying Jul < Kn 2 with n > n we obtain from (3.25)

P. "
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2 (0)

1 0 exp(- a 2
(1i 32 Ja(0)) - 32 u)

and so (3.24) follows by choosing c2 = 1 and cI > 0 appropriately.

Suppose K* n < Jul< Kn , with K > 0 arbitrary. Note that

fAn, I n is a nonnegative supermartingale under P so that under

condition (a) of Theorem 3, viz T > [n6J a.s. (P0) for some 0 < 6 < a,
n 0

we get 0

(3.26) =p E (An I(rn > [n6])) < E (A ) = (q(un 1 E)
n 0 0 nT 0 60 n, [i61

where cP(x) 2/Q(8 0 )Q( 0 + x)/(Q((0) + Q(8 0 + x)). Since cp is continuous in

x and cp(x) < 1 whenever x 0 0 we have 0= sup * cp(x) < 1 and therefore
x E [K,K]

!n 5 exp(-[n6]llogcp0 ) < exp(- u2 6llog01)2K 2

for all n sufficiently large and again (3.24) follows. Finally if condition

(b) of Theorem 3 holds, we obtain

< EO (A!, I(Tn ? [n(a - 6)])) + E0 (An I(T/n - a < -6 ))

(3.27) < ((un-)) [n(a- 6)] + A6n/2

2 )2
< exp(- 2 log ) + A exp(- -- 2 1log6j)

2K 2K

for large enough n and this leads us to (3.24). This completes the proof

of the lemma.

The remainder of the proof follows Ibragimov and Khasminskii (1972).

In view of (3.20) and Lemma 2, for any c > 0 and 0 < £ < En

(3.28) P I sup JA(U) - A (u ) I > 11/4] - ch20lUlu2 <h ,n n,T n  2

I Uil< 9,

for some constant c > 0, and for arbitrary n > 0, there exists a > 0,

.e,.pi;.. ; .W ,-,LI ..- -
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such that

(3.29) lim Po[ sup A (u) > n] 0
1+Me0a<lujkcn nn

Then the tightness of A(E )  in C0(R) follows from (3.28) and (3.29).n,T n  0

4. Some Remarks and Exam les: (a) The one-parameter processes A and

A () of Theorem 2 and 3 are those usually encountered in practice. For
n,T nI n
the sake of completeness however, we mention here briefly the two-parameter

process (A (u); t c [0,1], u E R), defined in the usual way forn,kn(t;O0)

u c (a n,b n) and set constant (> 0) otherwise, keeping the sample paths

continuous in u. Note that throughout e0 is held fixed in 0. With these

definitions it is not too difficult to see that the finite dimensional dis-

tributions of the process A converge weakly under P to those of

the process A = {A(u,t):t E [0,1], u E R) where

A(u,t) = expfuJ(0 0 )W(t) - u2 tj (00)).

In order to obtain the weak convergence of the entire process A we needn, T

to proceed further. We shall provide an outline here. Consider the space

D = D([0,1] x R) of all real valued functions on [0,1] XR which are continuous

from above with limits from below in the sense explained in Neuhaus (1971) or

Bickel and Wichura (1971). For each j -> I set D= D([0,1] x [-j,j]) and

let d. be a metric on D. generating the Skorohod topology there. To

define a d. consider the class A0 (respectively A.) of all strictly

increasing continuous mappings on r0,1] onto [0,1] (respectively on

[-j,j] onto [-j,j]). Let X = (X0,A) c A0 x A.. For any (t,u) E [0,1] x [-j,j]

write J(tu)J = max(ItI ,uI} and X(t,u) = (X 0(t),)A(u)). Thca we may

define d. by3

-- -. . . ..... ... .. ... .. .. . ... ..
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d (x,y) = inf{c > 0 : for some A = (A0,A.) C A x Aij with

Ilol < e, IlIjll < C, sup Ix(tu) - y(A(t,u))l < C}
(tu)cE[O,]x[-j,j]

where IX011 = sup log 0 0 and ijAjl1 is similarly defined. Then the
tos u V

metric d in D given by

d(x,y) = Z 2 1 + d (x,y)
J=I j

converts D into a complete separable metric space.

The sample paths of A lie in D and those of A lie in the subsetnit n

C([0,1] x R) of D, consisting of all continuous functions on [0,1] x R.

To verify tightness of the process A it suffices to show, for each j > 1,N, t
n

and arbitrary e > 0

lim liMn sup P00{sup[log-A n,kn(tl 0 ) (u) - lgA n,kn(t ;0) (u2)1

: ju1 - u2 1 < '1' I1t-t 2 < '2' luil J' t E [,l]] > C} = 0

To show this we follow (3.12) and write

nlogA (u) u ~. E'((T ) W (O

n,kn (t;o = u (nE (n)) Q(0) n,t; 0

Q'(O ) 2 -1
-u 2(n -kn(t ; 6

0 M( n(O0 ) ) I + (1 - xn

- (n-k n(t; 6 0))ng ,

where 0, x and g are defined in (3.13) - (3.16). The remainder of
n n

the analysis follows the usual conventional manipulations. Note that the

tightness of W in D[0,1] which follows from Theorem 1 will be used.
n

(b) The fundamental assumptions on the sequence {' I are that they be
n

adapted to the a-fields {Bn,k, :- k _ n} aid satisfy n-T n a a E (0,1]

V1 -- . .• . _< -
I. I ,

- A.t1,

....*.~~ 6 ! I ii<.
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in probability. Theorem 3 imposes a condition on the rate of this convergence.

For example in the simplest situation where sampling is terminated at time

t > 0 we may take T = nF (t), where F (t) is the empirical d.f. of
T 2

X ...,Xn In this case the inequality P0 [ jj -al a 6) : A2 6 n , holdsXn,1,'-,n,n " 00

for some constants A > 0 and 0 < 6 < I with a = F (t). Gardiner and Sen0

(1978) have considered a wider class of stopping variables T nthat are

expressible in terms of certain linear combinations of functions of the

observables X n,, Xn,n which is appropriate to this context.

(c) The restriction imposed in this paper to classes of distributions

satisfying (2.3) enables us to work in terms of independent variables even

though the observables Xn,l,...Xn,n are dependent. However, if this con-

dition does not hold results paralleling those given here can be obtained

though the analysis is essentially different and necessarily more involved

as one has lost the enormous technical facility of working with independent

random variables. In particular the transformation (3.3) cannot be made and

J (0) of (3.8) takes on a far more complicated form even though as n -+

n

nJ (0) converges to a limit. Finally, we remark that randomly stopped
n,i

likelihood ratio processes can be analysed for general dependent triangular

arrays {Xn,k : I N k k n, n > 1 with a different choice of local coordi-

nates 0
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